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ABSTRACT

We present a deep-learning based approach for measuring small planetary radial velocities in the
presence of stellar variability. We use neural networks to reduce stellar RV jitter in three years of
HARPS-N sun-as-a-star spectra. We develop and compare dimensionality-reduction and data splitting
methods, as well as various neural network architectures including single line CNNs, an ensemble
of single line CNNs, and a multi-line CNN. We inject planet-like RVs into the spectra and use the
network to recover them. We find that the multi-line CNN is able to recover planets with 0.2 m/s
semi-amplitude, 50 day period, with 8.8% error in the amplitude and 0.7% in the period. This approach
shows promise for mitigating stellar RV variability and enabling the detection of small planetary RVs
with unprecedented precision.

1. BACKGROUND

Stellar noise is one of the most problematic noise
sources in Extreme Precision Radial Velocity (EPRV)
measurements (e.g. Fischer et al. 2016; National
Academies of Sciences 2018). Broadly speaking, stel-
lar noise in EPRV measurements can be mitigated in
either the time domain (FF’ or a GP) or the wave-
length domain (modeling the flux or some function of
the flux). Time domain methods use activity proxies
such as photometry (original FF’ method, Aigrain et al.
2012), unsigned magnetic flux (Haywood et al. 2022), or
activity indicators derived from the spectra and often
use GPs to model the RVs and stellar noise simultane-
ously (Rajpaul et al. 2015; Jones et al. 2017; Gilbertson
et al. 2020). Wavelength-domain methods can be used
to generate activity indicators using spectra (e.g. Wise
et al. 2019; Ning et al. 2019; Siegel et al. 2022), or to
measure or correct RVs via clever modeling of the spec-
tra or cross-correlation function (CCF) (e.g. Dumusque
2018; Cretignier et al. 2020; Rajpaul et al. 2020; Collier
Cameron et al. 2021; de Beurs et al. 2022; Zhao et al.
2022; Cretignier et al. 2022).
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Here we present a new approach for modeling the spec-
tra in the wavelength domain where we use Deep Learn-
ing (DL) based neural networks to measure small plane-
tary RVs in the presence of stellar noise. de Beurs et al.
(2022) show that the CCF has enough information for a
neural network to reduce stellar RV jitter in three years
of HARPS-N sun-as-a-star spectra down from 1.47 m/s
to 0.78 m/s. To push towards more precise corrections,
we will leverage the di↵erences between spectral lines’
responses to stellar activity (e.g. Wise et al. 2019) by
using spectra instead of CCFs as our dataset. The un-
precedented Signal-to-Noise Ratio (SNR) and cadence
of sun-as-a-star spectra allow us to evaluate the e↵ec-
tiveness and limitations of neural networks at separat-
ing stellar and planet-induced RVs in the wavelength
domain at sub-m/s precision, and determine their ap-
plicability to the EPRV community’s goal of mitigating
stellar RV variability.

2. MOTIVATION AND OBJECTIVES

Neural networks are able to capture the complex non-
linear relationships between the spectral signatures of
di↵erent kinds of stellar variability and RVs that are
challenging for traditional EPRV approaches to capture.
Hence our choice to develop DL pipelines and to explore
their applicability to separating planetary and stellar
activity RVs stems from a perceived potential push the
limits of stellar activity correction in EPRV measure-
ments.
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The primary objective of this paper is to describe the
deep learning-based pipeline we developed to measure
planetary RVs in spectra.
In Section 3 we describe the data sources, Section 4

covers data preparation and preprocessing steps, Section
5 dives into the di↵erent machine learning approaches we
developed, Section 6 looks at the results of the machine
learning approaches, Section 7 summarizes our work and
discusses future areas for improvement.

3. DATA SOURCES

The primary dataset that we use for this work is the
HARPS-N Solar Spectra (HARPS-n) a high-resolution
RV spectrograph with continuous wavelength coverage
from 380 to 690 nm located on the island of La Palma,
Canary Islands, Spain. In September 2020, HARPS-
N released their first public dataset: 34550 disk inte-
grated spectra of the sun taken from 2015 to 2018. This
dataset includes significant numbers of sunspots, facu-
lae, and plage, and a higher-than-average level of con-
vective blueshift variation due to the solar magnetic cy-
cle maximum and minimum that occurred in 2014 and
2019 respectively. The solar spectra have 5-minute in-
tegration times to average down solar p-mode oscilla-
tions, and have average SNRs of approximately 350. The
data are obtained from the University of Geneva Data &
Analysis Center for Exoplanets website (dace.unige.ch).
This dataset has or is expected to have stellar activity

signals from pulsations, granulation, and magnetic ac-
tivity in the form of spots, faculae, plage, and convective
blueshift variations.

4. DATA PREPARATION

To evaluate the ability of DL-based neural networks
to separate stellar and planetary RVs, we utilize end-
to-end injection and recovery of planet-like Doppler sig-
nals. We start with extracted 2D spectra, and inject
the planetary signals by adding them to the heliocen-
tric frame correction RVs as soon as possible. This way
when we interpolate the spectra onto a common wave-
length grid, the planet-like signals are already included.
The 2D spectra are normalized before interpolating onto
a common grid. The steps are summarized below.

4.1. Pre-processing of HARPS Spectra

We begin our data-processing with extracted 2-D
spectra (in HARPS filenames, ‘.e2ds’ or ‘.s2d’ files). The
first steps we perform are order-by-order normalization,
RV shifting, and interpolation onto a common wave-
length grid. The spectra are normalized using a Julia
implementation of the RASSINE method (Cretignier et
al. 2020) in the public NeidSolarScripts.jl package. Nor-
malization is an important step to make sure the ML

approach does not simply focus on the highest-flux pix-
els because they have the highest variations (as is true
for photon noise). But it has the drawback of losing
information about the amount of percent variation ex-
pected in each pixel due to photon noise. However, this
information loss is low due to the extremely high SNR
of the solar spectra.
After normalization, we Doppler shift the normalized

spectra (henceforth referred to simply as spectra) to re-
move barycentric motion, and interpolate all of the spec-
tra onto a single wavelength grid (from one observation)
using a sinc kernel for interpolation, which prevents the
introduction of noise due to intra-pixel sensitivity. In-
terpolating onto the original pixel grid allows us to pre-
serve the spectrum’s pixel sizes, limiting interpolation
uncertainty that would be caused by changing the wave-
length grid spacing. On the HARPS-ACB data, the RVs
measured by the mask CCF method before and after
sinc interpolation have an RMSE of 11 cm/s introduced
by the interpolation, significantly lower than a linear or
cubic spline interpolation, but equal in RMSE to sam-
pling from a gaussian process with a matern 5/2 kernel
in this before-and-after test. Thanks to the identical
wavelength grid spacing in HARPS and HARPS-N, we
can interpolate spectra from both of these instruments
onto a common wavelength grid without changing bin
sizes. After interpolation, we combine the orders into a
1-D spectrum by removing the overlapping order edges,
throwing away overlapping pixels that are furthest from
an order center as these have the lowest SNR. Finally,
we remove data below 420 nm due to their relatively
high blending and photon noise and above 690 nm due
to oxygen telluric lines.
During the Doppler shifting step, to remove barycen-

tric motion, we inject a planetary signal. These planet-
induced RVs become the target values for the neural
network to predict. In the case of solar spectra, the
barycentric corrections remove the RVs due to all sig-
nificant celestial bodies, so we can be sure that the
injected planetary signals are the only center-of-mass
RVs in the spectra, and remaining RV signals are due
to stellar jitter. This makes for an ideal test dataset
for this approach, which proposes to use wavelength-
domain information to distinguish between stellar and
planet-induced RVs.

4.2. Injecting Planet-like RVs into Spectra

Building o↵ the preprocessing steps applied to the
HARPS spectra, we create multiple datasets where the
injected RV signals are selected to support distinct steps
necessary to develop and evaluate the neural network.

4.2.1. Random RVs
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To facilitate training the neural network we developed
datasets composed of random uniform RVs. Given a sin-
gle solar spectrum, a random RV was selected between
the range of [-1000, 1000] m/s, and the spectrum was
shifted based on that RV. This is the same RV injec-
tion described in the Doppler shifting step in Section
4.1. This process was performed 60 times for each solar
spectrum in HARPS-N, resulting in a dataset composed
of 2073000 spectra. We refer to this dataset as the Ran-
dom Uniform 1000 m/s RV Spectra.
The Random Uniform 1000 m/s RV Spectra are in-

tended to prevent the neural network from overfitting
by exposing the network to same pattern of spectral
noise (by using the same spectrum) multiple times, but
each time with a di↵erent injected planetary RV target.
Creating a dataset where each spectrum is considered
in isolation, when injecting the planet-like RV, is possi-
ble because the neural network is not trained with data
structured in a temporal manner.

4.2.2. Planet-like RVs

The overarching goal of this work is to develop a
neural network that can accurately output activity-
corrected RVs given an input spectrum. To this end, we
inject sinusoidal planet-like RV signals into the HARPS-
N spectra to create a series of planet test cases. The
planet test cases are aimed at determining a trained
neural networks sensitivity of two parameters, RV am-
plitude and period. The set of planets focused on testing
amplitude have a fixed period of 50 days while the am-
plitude ranges from 0.1 m/s to 1.0 m/s, in increments
of 0.1 m/s. The set of planets focused on testing period
have a fixed amplitude of 1.0 m/s while the period ranges
from 10 days to 250 days, in varying increments of 15,
25, and 50 days. A total of 20 planet-like RV datasets
were created, 10 for each of the period and amplitude
test cases (Figure 1).

4.3. Selecting Spectral Lines

We utilize a visible-light spectral line list of 4570 lines
to extract lines from the HARPS-N spectra, where the
window around each line spans 15 pixels. While neural
networks are capable of handling the full spectrum as
input, there are some disadvantages to this approach.
Input dimensionality will be much larger, which in most
cases, will correspond to a larger number of trainable
parameters and increase the time to train the network.
Our primary goal was to determine the applicability of
neural networks in measuring RVs, as such, enabling
reasonable training times to allow quick iterations was
prioritized.

4.4. Train, Validation, and Test Data Splits

Figure 1. Full planet-like RV test cases used for evaluating
the neural network’s ability to recover planet-like RVs. Pur-
ple points correspond to planets testing shorter and longer
period orbits (keeping amplitude fixed at 1 m/s), while red
points correspond to planets testing for amplitude (keeping
period fixed at 50 days).

Data are split into training, validation, and test par-
titions, roughly consisting of 80%, 10%, and 10% of the
overall number of records, respectively. For the Ran-
dom Uniform 1000 m/s RV Spectra, the train, valida-
tion, and test splits are composed of 1657680, 207180,
and 207300 spectra, respectively. The validation split
is consistently referenced during the training process to
ensure the network is not overfitting. It further acts as
a way to measure iterative changes made to the network
design and their e↵ect on the network’s performance.
The held-out test data is only used for reporting the
network’s performance and has no influence on the net-
work development.
Each split is randomly sampled by referencing the

unique timestamps associated with the HARPS-N spec-
tra. This was done intentionally so that all spectra with
a random RV shift applied to the same underlying spec-
trum can be collectively assigned to either the train,
validation, or test split. Sampling the unique times-
tamps to create these splits also allowed us to generate
the same splits based on timestamps for both the ran-
dom RVs and the planet-like RVs, for training the neural
network and evaluating the network’s planet detection
capabilities, respectively.

4.5. Feature Scaling
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Scaling of the input spectra and the target output
RVs is performed to prevent large error gradient values
and attain faster convergence in a gradient-based learn-
ing process, as is the case with neural networks. Spectra
were zero-centered by subtracting the mean flux from all
spectra, while the RVs were min-max scaled remapping
the values to a range of [0, 1]. These specific strate-
gies were selected by experimenting with di↵erent scal-
ing approaches and selecting the scalers that resulted in
the best performance. Scalers were fit using the training
data and applied to rescale the validation and test data.

4.6. Outlier Removal

Throughout the development of the neural network,
a series of observations repeatedly presented themselves
as problematic, having large errors relative to the collec-
tive distribution of errors. In total, 44 spectra from the
original HARPS-N data were excluded for this reason.
This list is available upon request from a corresponding
author.

5. MACHINE LEARNING ARCHITECTURES

We developed a series of neural network-based ap-
proaches to isolate the planet-induced RV signal. We
focused on designing network architectures that had sig-
nificantly di↵erent characteristics regarding how spectra
were handled. For each of the three approaches, the
generic input to the neural network are the RV shifted
spectra, while the target outputs are the RVs. These
approaches result in a functional mapping where, given
an input spectrum, the neural network will output an
estimated RV value for a planet or planets.

5.1. Single Line CNNs

A single CNN architecture was used to train networks
for each spectral line. From this approach, we end up
with 4570 CNNs - one CNN per spectral line - where
each network is able to generate a predicted RV value
for a given spectrum.
The underlying CNN architecture used across all spec-

tral lines consisted of 4 1-D convolutional layers (filter
size of 3; step size of 1), followed by 3 fully connected
dense layers. When the feature map output by the final
convolutional layer is flattened, we concatenate feature
map with the original 15 pixel spectral line input, all of
which gets fed to the dense layers.
For a given CNN, the RMSE for the predicted RV

is calculated on the validation split, providing a single
performance metric associated with that CNN. By scor-
ing all 4570 line-based CNNs, we are able to rank the
CNNs by RMSE. This ranking gives us a way to order
lines based on their predictive capability for identifying
(injected) planetary RVs.

Figure 2. RMSE vs wavelength for the center of each spec-
tral line. The RMSE in the scatter plot is calculated on the
test split. Histograms are provided for each axes to show:
1) how spectral lines are distributed across wavelength given
the line list we used; 2) performance distribution (RMSE)
for the train, validation, and test splits.

The individual CNNs are not particularly useful given
the best performing single-line CNN has a RMSE of
6.0183 m/s on the test set (Table 1, first row). How-
ever, the CNNs’ RMSE scores have a positively skewed
distribution (Figure 2) indicating that the majority of
lines o↵er some utility in measuring RVs.
There are two follow-on approaches that take advan-

tage of these networks and their outputs. One approach
uses the predictions from the individual CNNs as inputs
to train an ensemble, while the second approach takes
a subset of lines with the lowest RMSE and collectively
inputs those lines into a single CNN.

5.2. Ensemble of Single Line CNNs

Ensembles are useful in that they learn to recognize
the strengths and weaknesses of multiple models in con-
junction with one another. The model that combines
the predictions from other models, CNNs in this case, is
referred to as a meta-learner. A common approach is to
use an ordinary least squares (OLS) regression model to
server as the meta-learner. Ensembles provide benefits
over a single model in that ensembles are not fully re-
liant on a single set of weights and inputs, thus allowing
them to better generalize to a given task.
Given the approach in 5.1, we combine the output

RV predictions for each single line CNN. For the Ran-
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Figure 3. Distributions of predicted RVs from the 4570
single line CNNs for a sample of the injected RVs. The dis-
tributions for each set of predictions is shown as a boxplot
- red vertical line is the median, box is the IQR, whiskers
are [Q1 - 1.5 * IQR, Q3 + 1.5 * IQR], and the black points
any predictions outside the whiskers. The vertical green lines
correspond to the true RV values. The distribution for each
set of predicted RVs is centered around the true RV (green
vertical line).

dom Uniform 1000 m/s RV Spectra, this results in a
2073000x4570 matrix of predicted RVs. Figure 3 pro-
vides a sample of the inputs used to fit the OLS model.
The OLS model is fit using the subset of predicted RVs
that corresponds to the training split used to train each
single line CNN.
The ensemble OLS model was initially fit using the

CNNs’ predictions from all 4570 spectral lines, resulting
in a test RMSE of 2.0939 m/s (Table 1). Examining the
distribution of the model coe�cients showed that many
of the coe�ncients were approximately zero (Figure 4).
By iteratively pruning inputs associated with fitted co-
e�cients approximately close to zero (less than 1e-4),
and refitting the OLS model with the reduced number
of inputs, the input dimension for the OLS model was
reduced to 1000 variables (single line CNN RV predic-
tions). The OLS model fit with the reduced input had a
test RMSE of 1.2673 m/s (Table 1). A final meta-learner
was fit after additional pruning, resulting in inputs con-
sisting of 250 RV predictions. This model generalizes
better than the ensemble with all inputs, but performs
overall worse than the 1000 input ensemble.
A downside to this approach occurs when evaluating

other datasets. In order to generate RV predictions for a
planet-like RV dataset, all 1000 CNNs (associated with

Figure 4. Distributions of coe�cients for the fitted OLS
model using the single-line CNNs’ predictions as inputs. The
top distribution corresponds to the coe�cients of the OLS
model fit using all 4570 single-line CNNs’ predictions. The
subsequent distributions, from top to bottom, are the re-
sulting distributions of fitted coe�cients following pruning,
where any input with a coe�cient approximately close to
zero (LT 1e-4) is removed.

the pruned ensemble model) need to be loaded and indi-
vidually used to generate predictions that feed into the
ensemble OLS model.

5.3. Multi-line CNN
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Figure 5. Line depth vs line wavelength plots for the 4570 spectral lines used throughout this analysis. The left plot shows the
1000 lines, colored in red, resulting from pruning in Section 5.2, while the center plot shows the 250 lines resulting from further
pruning. The right plot shows the 250 spectral lines with the lowest test RMSE from the single line CNNs. The multi-line CNN
was trained once using the lines in the center plot and a separate time using the lines in the left plot.

To address the complexity of orchestrating hundreds
of CNNs, we took an alternative approach that utilizes
a single CNN with multiple spectral lines as inputs. 250
spectral lines were stacked such that each line is repre-
sented in a channel or band-like structure, similar to the
RGB channels of a color image. A single input to the
muti-line CNN is a 250x1x15 dimensional array where
each vector indexed along the 0th axis corresponds to
a single spectral line. The number of lines, 250, was
selected based upon our remote compute environment’s
system memory and GPU memory balanced against the
size of the Random Uniform 1000 m/s RV dataset.
We considered two di↵erent sets of 250 spectral lines

while training the CNN. The first set of spectral lines
consisted of the 250 single line CNNs with the lowest
RMSE (right plot, Figure 5). The second set of 250
spectral lines were derived from additional pruning of
the 1000 spectral line ensemble (center plot, Figure 5).
The architecture of this multi-line CNN is the same

as the architecture used for the single line CNNs, with
the exception that the input layer is changed to accom-
modate 250 spectral lines, opposed to a single spectral
line. In this CNN, the weights of the filters in the convo-
lutional layers are learned feature extractors where the
features are learned from all the input spectral lines col-
lectively. This di↵ers slightly from the single line CNN,
where the weights of the filters are feature extractors
that are learned from and specific to a given line.
Overall, the multi-line CNN trained on the 250 best

individual lines seems well balanced, where the spread
of RMSE scores across the train, validation, and test
splits are not that dissimilar from one another (Table 1,
CNN (Top 250)). This network performs slightly better
than the 1000 spectral line ensemble (Table 1, Ensemble

(1000)). The multi-line CNN trained on the 250 lines re-
maining from further pruning of the 1000 line ensemble,
achieves the best RMSE on the training data, but has
issues generalizing to the validation and test data (Table
1, CNN (250 Pruned)).
Figure 6 outlines a series of error (residual) analysis

plots. The plots pertaining to the test split for reporting
in this document, but in practice utilized the validation
split for assessing systemic issues present in the errors.
Noteworthy aspects of these plots include: a near per-
fect linear relationship between the predicted RVs and
actual RVs (upper left, Figure 6); normally distributed
errors (upper right, Figure 6) albeit not zero centered;
no distinct temporal trends (middle row, Figure 6); and
no apparent trends or patterns in the full range of RVs
or a localized subset of RVs (bottom row, Figure 6).

6. RESULTS

Our approach utilizes NNs to filter the RV contribu-
tion from stellar activity in a given input spectra by ex-
plicitly forcing the network’s attention on what we care
about the most - the (injected) planetary RVs - during
the training process. As such, the predicted RVs are, in
the best case scenario, exact representations of the true
planetary RVs, however, the trained neural network is
imperfect where the predicted RVs contain error. The
output estimated planetary RV signal is still useful.
To better understand the extent of the neural net-

work’s utility in finding planets, we use the multi-line
CNN (Top 250) to make RV predictions for each of the
planet-like RV datasets described in Section 4.2.2. Be-
cause these planet-like datasets are created using the
same underlying HARPS-N solar spectra, which was also
used to create the 1000 m/s Random RV dataset, we use
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Figure 6. A series of error analysis plots used to assess sys-
temic issues associated with a trained neural network. Pre-
dicted RVs and the associated errors are from the multi-line
CNN (250 Top). The displayed plots are from test data, how-
ever, in the development of the neural network the training
and validation splits were referenced for informing necessary
changes to in preprocessing steps or network architecture de-
sign; test data is show only for reporting in this context.

the same spectra in the test split, used to score the neu-
ral network, to evaluate and check the network’s utility
in detecting planets.
Despite training on a large quantity of diverse spectra,

the neural network trained on the 1000 m/s Random RV
dataset still has a small vertical o↵set in the predicted
RVs when compared to the actual RVs for the training
data. Hence, for each planet-like RV datasets’ predicted
RVs, we apply a standard correction corresponding to
the intercept coe�cient from the best fit line for the
predicted vs actual RVs (upper left, Figure 6) for the
training data. Since planetary mass measurements do
not require an accurate aboslute RV scale, but rely only
on di↵erential RV measurements, this o↵set correction
is not considered to be a weakness in our approach.
Following this correction, we fit a Lomb-Scargle peri-

odogram to a given planet-like test case’s predicted RVs.
We take the period associated with the maximum power

RMSE (m/s)

Architectures Train Validation Test

Single Line CNN 6.1177 6.0839 6.0183

Ensemble (4570) 1.0360 2.1124 2.0939

Ensemble (1000) 1.1964 1.2540 1.2673

Ensemble (250) 1.4027 1.4502 1.4448

CNN (Top 250) 1.1051 1.2213 1.2069

CNN (Pruned 250) 1.0282 1.3729 1.3430

MAE (m/s)

Train Validation Test

Single Line CNN 4.8340 4.8463 4.7543

Ensemble (4570) 0.8173 1.7002 1.6756

Ensemble (1000) 0.9427 0.9921 0.9949

Ensemble (250) 1.1061 1.1413 1.1415

CNN (Top 250) 0.8756 0.9693 0.9530

CNN (Pruned 250) 0.8269 1.0890 1.0599

Table 1. Performance (RMSE and MAE) of di↵erent archi-
tectures on the train, validation, and test data. Performance
for the ensemble models includes the full input data corre-
sponding to all 4570 lines, 1000 lines after pruning, and 250
lines after additional pruning.

of the periodogram to correspond to the recovered or-
bital period of the injected plant (top row, Figure 7).
We assume, given a neural network capable of perfectly
predicting a planet’s RVs, we should be able to recover
any period, constrained to the sampling window and ca-
dence.
Using RadVel (Fulton et al. 2018), we perform a max-

imum likelihood estimation (MLE) fit to recover the
amplitude of the injected planet. For initial parame-
ter guesses, we set: the period to the highest peak in
the Lomb-Scargle periodogram; the semi-amplitude to
the 90th quantile of the predicted RVs; RV jitter to the
training RMSE score from the 1000 m/s Random RV
dataset. After fitting, we compare the model estimates
for period and amplitude against the true period and
amplitude.
The complete results for this process, performed on all

20 injected planet test cases, are captured in Figure 7.
For this analysis, we produced results with both multi-
line CNNs referenced in Section 5.3, ”250 Top” and ”250
Pruned”. While the 250 Top CNN was more balanced in
regards to its train, validation, and test RMSE scores on
the 1000 m/s Random RV dataset, we saw it underper-
form on the task of recovering the planet-like RV signals
from the injected planet test cases. In comparison, the
250 Pruned CNN performed well when recovering the
planet-like RVs, even on the spectra associated with the
test split it had struggle to generalize as well to. In the
amplitude sensitivity tests, we were able to recover a
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Figure 7. Performance results for the 20 planet test cases. The left column corresponds to the amplitude recovery test cases
and the right column corresponds to the period recovery test cases. Purple ”x”s correspond to the multi-line CNN (250 Top)
RVs and the red circles correspond to the multi-line CNN (250 Pruned) RVs. While both networks performed similarly on the
period recovery test cases, the multi-line CNN (250 Pruned) outperformed the multi-line CNN (250 Top) on all amplitude test
cases in terms of absolute error (middle left) and percent error (bottom left).

0.2 m/s semi-amplitude, 50 day period, planetary sig-
nal, where the periodogram and MLE fit identified the
true amplitude and period, within 8.8% error and 0.7%
error, respectively (left column, Figure 8). In every am-
plitude test case, the 250 Pruned CNN outperformed
the 250 Top CNN. Both CNNs had nearly identical per-
formances on the period test cases, where they struggled
to identify a planet with an amplitude of 1.0 m/s and
period of 10 days, but succeeded on every planet with an
amplitude of 1.0 m/s and a period of 25 days or greater.

7. CONCLUSION AND DISCUSSION

Using the public release of HARPS-N solar spectra,
we demonstrated a deep learning based approach to re-
cover injected planetary RVs in spectra. This approach
is unique in that it operates specifically in the wave-
length domain and does not utilize temporal features

- lagged observations or aggregated observations. The
neural network is trained on a diverse collection of spec-
tra, injected with random RVs ranging from [-1000.0,
1000.0] m/s, which allow the network to generalize well
to arbitrary sinusoidal planets. We apply the trained
neural network to complete sinusoidal planets and utilize
a Lomb-Scargle periodogram on the network’s predicted
RVs, showing that the frequency tied to the planet’s pe-
riod is associated with the highest power, down to a 10
day period and 1 m/s semi-amplitude planet. Addition-
ally, we show that a planet with a 50 day period and 0.2
m/s semi-amplitude is recoverable from the predicted
RVs using MLE.
Future work can include making improvements to the

neural network’s performance and our interpretation of
the results. Specifically, this may include experimenting
with di↵erent sampling techniques for train, validation,
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Figure 8. Two sets of results for the planet-like test cases. The left column corresponds to a planet with a 50 day period and
0.2 m/s semi-amplitude, while the right column corresponds to a planet with a 250 day period and 1.0 m/s semi-amplitude. The
top row depicts power and frequency for the Lomb-Scargle periodograms fit to each planet-like test case. The red dotted line
is the true period, while the red ”x” indicates the frequency of the peak power. The center row shows phase-folded diagrams
while the bottom row shows the time series plots, both produced following the MLE. Dark points in the phase-folded diagrams
and time series plots are the predicted RVs made by the neural network - predicted RVs for the 1.0 m/s semi-amplitude planet
show distinct sinesoidal characteristics.

and test splits, improving selection of the line subsets
to feed to the neural network and refining the training
pipeline to operate beyond current memory constraints.
Future work may also include more rigorous hyperpa-
rameter tuning across the entire pipeline and an overall

improved reporting of results to include planetary mass
and period uncertainties.
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